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Abstract

This report describes a new family of Newton-Krylov methods for
solving nonlinear systems of equations arising from the solution of
Richards’ equation and in fully implicit formulations in air-water sys-
tems. The basic approach is to perform secant (Broyden) updates
restricted to the Krylov subspace generated by the GMRES iterative
solver. This approach is introduced as Krylov-secant methods. One
of the most attractive features of these methods is their performance
of sequence of rank-one updates without explicitly recalling the com-
putation or action of the Jacobian matrix. Implications of these up-
dates in line-search globalization strategies, computation of dynamic
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tolerances (forcing terms) and the use of preconditioning strategies
are presented. Numerical results show improvements over traditional
implementations.

1 Introduction

It is well known by environmental engineers that solving Richards’s equa-
tion can be a challenging problem due to the high nonlinearities induced by
pressure and saturation dependent coefficients in the temporal and spatial
terms [21]. Moreover, when sufficient computer power is available for solving
more complex air-water groundwater applications, fully implicit formulations
are preferred over IMPES formulations since they are unconditionally stable
and allow the performance of larger simulation timesteps [3, 11, 14]. These
timesteps are numerically constrained to Newton’s radius of local conver-
gence, and the cost of performing each one of them may be computational
high.

On the other hand, recent advances in Newton-Krylov methods [17, 19]
have brought up new opportunities for environmental agencies to speedup
the computation in fully implicit implementations [4, 16, 17]. Nowadays, the
use of Krylov iterative methods [27, 31] such as Orthomin, QMR, BiCGSTAB
and GMRES provides powerful means to implement inexact versions of New-
ton’s method for solving large scale problems in an efficient way.

Despite these rapid advances, linear preconditioning is still a major issue
for fully implicit implementations in multiphase flow due to the coupling of
different physical variables [4, 15, 16]. Nevertheless, it is clear that improving
the nonlinear convergence may result in significant savings in CPU time
since each nonlinear iteration typically involves dozens to hundreds of linear
iterations.

The present work proposes an efficient way to exploit the underlying
Krylov subspace information from the linear solver in order to accelerate the
nonlinear convergence of Newton-Krylov methods. The basic approach is
to perform secant (Broyden) updates restricted to the Krylov subspace gen-
erated by the GMRES iterative solver, namely, updates to the Hessenberg
matrix resulting from the Arnoldi factorization. This approach is introduced
as a new family of Krylov-secant methods. One of their most attractive
features, beside achieving higher rates of nonlinear convergence, is the per-
formance of sequences of rank-one updates without explicitly recalling the
computation or action of the Jacobian matrix. The procedure may be de-
scribed as the composition of several chord steps for every single Newton
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step in a predictor-corrector fashion.
Therefore, in contrast to other fully implicit implementations for ground-

water flow implementations this work focuses on reducing the number of non-
linear iterations at a low computational cost. In fact, Krylov-secant methods
may be implemented as a practical extension to the Newton-Krylov solver
framework. We discuss implications of these updates in the formulation of
line-search globalization strategies, computation of dynamic tolerances (forc-
ing terms) and the use of preconditioning strategies.

Numerical results show improvements over traditional implementations,
especially in those cases where nonlinearities increase due to stringent pres-
sure and saturation changes throughout the simulation.

Further potentials of the proposed method are devised with the current
advances in augmenting, reorthogonalizing and shifting the Krylov basis in-
formation [5, 23, 26].

2 Newton-Krylov Framework

We are interested in solving the following nonlinear system of equations

F (u) = 0, (1)

where F : Ω ⊆ Rn → Rn. A variety of different discretization techniques
applied to nonlinear partial differential equations give rise to an algebraic
system such as (1), where u is the unknown vector representing the nodal
values of the state variable.

In our particular case, this nonlinear system of equations arises from dis-
cretizing either Richards’ equation or the coupled partial differential equa-
tions describing the air-water system. The nonlinearities in both equations
are present in the temporal term and the diffusive term, and, when fully
implicit schemes are employed, the transient and steady-state cases lead to a
nonlinear algebraic system such as (1). Newton’s method implies the solution
of the Jacobian system

J (u) δu = −F (u) , (2)

where F (u) and J (u) denote the evaluation of the function at u ∈ Rn and
its derivative at any Newton step, respectively.

Due to the high cost or absence of derivatives for the explicit construction
of the Jacobian J , the action of this operator onto a vector (in the form of
matrix-vector products) may be performed by finite differences. This is, in
fact, one of the most appealing features of Newton-Krylov methods. These
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methods are also amenable to globalization by line-search or trust region
strategies and for dynamic control of linear tolerances (i.e., forcing terms).
The reader is referred to [19] to see a state-of-the-art discussion of the subject.
Specific theory supporting the description of the line-search backtracking
method and the selection of the forcing terms to control the convergence
of the linear solver at each nonlinear step may be found in [10, 17, 25]. A
globalized Newton-Krylov method with a line-search backtracking procedure
may be stated as follows:

Algorithm 2.1 (Newton-Krylov algorithm with forcing terms and line-search
backtracking)

1. Let u(0) be an initial guess.

2. For k = 0, 1, 2, . . . until convergence do

2.1 Choose η(k) ∈ [0, 1) , t ∈ (0, 1).

2.2 Using some Krylov subspace iterative method, compute a vector
s(k) satisfying

J (k)s(k) = −F (k) + r(k), (3)

with ‖r(k)‖
‖F(u(k))‖ ≤ η(k).

2.3 While
∥∥∥F

(
u(k) + s(k)

)∥∥∥
2

>
[
1− t

(
1− η(k)

)] ∥∥∥F (k)
∥∥∥ do

2.3.1 Choose λ to minimize a quadratic polynomial over
[
λ, λ

]
⊂

(0, 1) that interpolates

F (λ) =
∥∥∥F

(
u(k) + λs(k)

)∥∥∥
2
.

2.3.2 Update s(k) = λs(k).

2.4 Update η(k) = 1− λ
(
1− η(k)

)
.

3. Update solution u(k+1) = u(k) + s(k).

We can make the following observations:

• The loop at step 2.3 represents a global backtracking based on the
Goldstein-Armijo condition [7]. In practice, the parameter t is se-
lected on the order of 10−4. The interval

[
λ, λ

]
= [.1, .5] is typically
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chosen, and the quadratic interpolant p is constructed in such a way
that p (0) = F (0) =

∥∥∥F (k)
∥∥∥
2
, p (1) = F (1) =

∥∥∥F (k) + s(k)
∥∥∥
2
and

p′ (0) = F ′ (0) = 2
〈
F (k), J (k)s(k)

〉
.

• The forcing term η(k) is selected according to the following criterion:

η(k) = min
{

ηmax, max
{

η̃(k),
(
η(k−1)

)2
}}

, (4)

where

η̃(k) =

∣∣∣
∥∥∥F (k)

∥∥∥−
∥∥∥F (k−1) + J (k−1)s(k−1)

∥∥∥
∣∣∣

∥∥F (k−1)
∥∥ . (5)

The choice of η̃(k) reflects the agreement between F and its linear model
at the previous iteration, and it depends on how λ is chosen. Thus, the linear
solver tolerance is larger when the Newton step is less likely to be productive
and smaller when the step is more likely to lead to a good approximation.
This operation is performed once the backtracking procedure has returned
the adequate nonlinear step size to update the solution. Fig. 1 illustrates
the savings in computation using the forcing terms for a fully-implicit for-
mulation for a 3-D two-phase problem. The staircase shape displayed by an
inexact Newton method with a fixed forcing term suggests the amount of
over-computation in generating decreasing Newton directions. In contrast,
the criterion given by (4) and (5) avoids flat portions of the curve resulting
then in a significant overall saving of GMRES iterations (about 400 itera-
tions).

3 The Family of Secant Solvers

Rank-one updates for solving nonlinear equation are sometimes referred to
as secant or quasi-Newton methods since no “true” Newton equation is ever
formed throughout all iterations. These updates obey a secant condition
that must be satisfied by the new Jacobian approximation. The best of these
methods still seems to be the first one originally introduced by Broyden (see
e.g., [7]).
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Figure 1: The use of the forcing term criterion for dynamic control of linear
tolerances. The solid line represents a standard inexact Newton implemen-
tation with fixed linear tolerances 0.1. The dotted line is the inexact Newton
implementation with the forcing term criterion. Each symbol ∗ indicates the
start of a new Newton iteration.
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3.1 Broyden’s Method

Given u ≈ u∗ and A ≈ J (u) , we can find an approximate new Newton step,
u+, by

u+ = u−A−1F (u) . (6)

Broyden’s method computes a new A+ by means of the following rank-
one update

A+ = A +
[F+ (u)− F (u)−As] gt

gts
, (7)

that, whenever the approximated Jacobian equation is solved exactly, i.e.
As = −F (u), reduces to

A+ = A +
F+ (u) gt

gts
,

for gts 6= 0. The vector g may be chosen in several ways. For instance, when
g ≡ s, we obtain the “good Broyden’s update” and when g ≡ At [F+ (u)− F (u)],
we have the “bad Broyden’s update”.

One of the key features of Broyden’s method is to provide a sparse ap-
proximation to the true Jacobian that may be exploited in structure. In fact,
there are efficient procedures to factorize such an operator under low-rank
modifications [7].

In the setting of groundwater flow problems, Broyden’s method may be a
convenient option to avoid the computation of several hundred thousands to
millions of entries in the Jacobian matrix. However, caution must be taken
when the updated operator A+ becomes numerically singular. In that case,
the Jacobian must be reconstructed at the new point to resume the nonlinear
iterations.

This algorithm converges q-superlinearly to F (u∗) if the rate at which
the Jacobian is approximated is faster than the reduction in the nonlinear
step (i.e., the Dennis-Moré characterization [7]).

3.2 The Nonlinear Eirola-Nevanlinna (NEN) Method

The nonlinear Eirola-Nevanlinna (NEN) was proposed by [34] as the nonlin-
ear counterpart to the linear EN algorithm [9]. This method is a general-
ization of Broyden’s method for solving linear/nonlinear equations and has
received particular attention in recent years [13, 32]. Interestingly enough,
the algorithm has connections with the GMRES algorithm [31]. The NEN
algorithm may be regarded as the composition of two Broyden’s iterations
as the following presentation suggests:
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Algorithm 3.1 (Nonlinear EN)

1. Give an initial guess u(0) and Jacobian approximation A(0).

2. For k = 0, 1, . . . until convergence do

2.1 Solve A(k)s(k) = −F (k).

2.2 q(k) = F (k+1) − F (k).

2.3 A(k+1) = A(k) + (q(k)−A(k)s(k))(s(k))t

(s(k))t
s(k)

.

2.4 Solve A(k+1)s̃(k) = −F (k).

2.5 Update solution u(k+1) = u(k) + s̃(k).

Note that each of the iterations involves the solution of two linear sys-
tems. However, we still maintain one rank-one update and one function
evaluation per step as in Broyden’s method. It can be shown that the up-
date at step 2.5 can be expressed as

u(k+1) = u(k) + s̃(k)

= u(k) + s(k) + θ(k)ŝ(k),
(8)

where
s(k) = −

(
A(k)

)−1
F (k),

ŝ(k) = −
(
A(k)

)−1
F

(
u(k) + s(k)

)
,

and
θ(k) =

1

1− (s(k))t
ŝ(k)

(s(k))t
s(k)

,

provided that
(
s(k)

)t
s(k) 6= 0. Furthermore,

u(k+1) = u(k) −
(
A(k)

)−1
[
F (k) + θ(k)F

(
u(k) −

(
A(k)

)−1
F (k)

)]
, (9)

The scalar parameter θ(k) represents the acute angle between the directions
generated by step 2.1 and a chord step. Note that if the directions s(k)

and ŝ(k) are mutually orthogonal then the chord step is taken in full. The
composition of steps of this kind has been devised as a mechanism to generate
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higher-order nonlinear algorithms [17, 24]. In fact, if A(k) = J (k) and θ(k) = 1
for k = 0, 1, . . . then (9) becomes

u(k+1) = u(k) −
(
J (k)

)−1
[
F (k) + F

(
u(k) −

(
J (k)

)−1
F (k)

)]
, (10)

for k = 0, 1, . . .. This recurrence represents a higher-order modification of
Newton’s method. Iterates generated by (10) converge q-superlinearly with
q-order 3 [24]. These methods were studied by Shamanskii [28] and Traub
[29]. They pointed out that even higher-order methods can be built out of
a longer sequence of chord steps alternated with regular Newton steps. In
a more recent treatment, Kelley names those methods after Shamanskii and
compares the particular case (10) numerically against Newton’s method [17].

Along the lines of Gay’s local convergence analysis for Broyden’s method,
Yang shows that the NEN algorithm converges n-step q-quadratically for n-
dimensional problems [34]. Therefore, as in the linear case, the NEN method
converges twice as fast as Broyden’s method. In addition, efficient limited
memory BFGS implementations lately proposed for Broyden’s method apply
here as well [22, 30].

4 Krylov-Secant Updates

Let A(k) be an approximation of the current Jacobian J (k) . We are interested
in looking at a minimum change of A(k) consistent with the secant equation
A(k)s(k) = F (k+1) − F (k) and restricted to the underlying Krylov subspace.
A basis for this subspace arises as a result of using a linear iterative solver
such as GMRES for solving the approximated Jacobian system associated
with A(k).

4.1 Secant Updates constrained to the Krylov subspace

The Arnoldi factorization provides valuable information that should not be
discarded at every GMRES restart. This observation has been a cornerstone
of several efforts to initiate the reuse or recycling of Krylov basis information
to generate improved restarted versions of GMRES [5, 23, 26]. We show
how to reflect secant updates on the Jacobian matrix without altering the
current Krylov basis. For the sake of simplicity, let us omit the sources
of inexactness induced by the use of GMRES whose relative residuals are
supposed to converge at a predefined tolerance (i.e., to a prescribed forcing
term value).
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For a given nonlinear iteration k, recall that the Arnoldi factorization for
A(k) is given by [27]

A(k)V
(k)
l = V

(k)
l H

(k)
l + f

(k)
l+1e

t
l , (11)

where V
(l)
l ∈ R holds the Krylov orthogonal basis along its columns, H

(k)
l ∈

R is an upper Hessenberg matrix and f
(k)
l is a residual vector orthogonal to

V
(l)
l . Equation (11) may also be expressed in the more compact form:

A(k)V
(k)
l = V

(k)
l+1H

(k)
l , (12)

with

H
(k)
l =

(
H

(k)
l

‖f (k)
l ‖et

l

)
,

and
V

(k)
l+1 =

(
V

(k)
l | f

(k)
l

‖f (k)
l
‖

)
.

Consider the solution of the following approximated Jacobian equation
at the k-th nonlinear iteration

A(k)s(k) = −F (k), (13)

with the GMRES algorithm. This linear solution may be realized as part of
an inexact Newton or Broyden’s method. Let s

(k)
l = s

(k)
0 + V

(k)
l y(k) be the

solution obtained after l steps within the final GMRES restart cycle. The
associated Krylov subspace for this problem is given by K(k)

l

(
A(k), r

(k)
0

)
.

Now, we seek to use the information gathered during the solution of (13) to
provide an approximation to the system

A(k+1)s(k+1) = −F (k+1). (14)

Equation (14) may be seen as a perturbed version of linear system (13)
and hence, in general, we can not guarantee that K(k+1)

l (A(k+1), r
(k+1)
0 ) =

K(k)
l (A(k), r

(k)
0 ). However, rank-one updates to the Arnoldi factorization of

(13) may be done without destroying the Krylov basis. That is,
(

A(k) + V
(k)
l zwt

(
V

(k)
l

)t
)

V
(k)
l = V

(k)
l

(
H

(k)
l + zwt

)
+ h

(k)
l+1,mv

(k)
l+1e

t
l , (15)

or equivalently,
(
V

(k)
l

)t
[
A(k) + V

(k)
l zwt

(
V

(k)
l

)t
]
V

(k)
l = H

(k)
l + zwt, (16)
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for any vectors z, w ∈ Rl. Expression (16) suggests a clearer way to update
H

(k)
l rather than A(k). Note that the current Jacobian approximation ap-

pears to be updated by a rank-one matrix whose range lies onK(k)
l

(
A(k), r

(k)
0

)
.

In order to proceed, it would be convenient to express the secant equation

A(k+1)s(k) = F (k+1) − F (k), (17)

in terms of a solution strictly lying on the Krylov subspace. In addition, if
the initial guess to GMRES is other than zero, we may rewrite (17) in terms
of a system whose solution lies on the Krylov subspace. That is, equation
(13) would satisfy

A(k)s(k) = −F (k) −A(k)s
(k)
0 = r

(k)
0 , (18)

with s
(k)
l = V (k)y(k), and thus, the corresponding secant equation (17) would

become
A(k+1)s(k) = F (k+1) − r

(k)
0 . (19)

Multiplying both sides by
(
V (k)

)t
, it follows that H

(k+1)
l should satisfy the

secant equation
H

(k+1)
l y(k) =

(
V

(k)
l

)t
F (k+1) + βe1, (20)

where β =
∥∥∥r

(k)
0

∥∥∥. Therefore, the Krylov subspace projected version of the
secant equation (17) can be written as

H
(k+1)
l = H

(k)
l +

((
V

(k)
l

)t
F (k+1) + βe1 −H

(k)
l y(k)

) (
y(k)

)t

(
y(k)

)t
y(k)

. (21)

This update in terms of A(k) is as follows

A(k+1) = A(k) + P

(
q(k) −A(k)s(k)

) (
s(k)

)t

(
s(k)

)t
s(k)

, (22)

with P = V
(k)
l

(
V

(k)
l

)t
. We refer to the update (21) as the Krylov-secant

update. Note that the operator P (k) is an orthogonal projector onto the
Krylov subspace Km

(
A(k), r

(k)
0

)
. That is,

•
(
P (k)

)2
= P (k) (Idempotency).
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•
(
P (k)

)t
= P (k) (Symmetry).

• Range
(
P (k)

)
= Km

(
A(k), r

(k)
0

)
.

4.2 Krylov Secant vs. Standard Secant Update

It can be shown that expression (22) corresponds to the solution of the
following minimization problem

min
B∈Rn×n

∥∥∥B −A(k)
∥∥∥

F
subject to

(
P (k)BP (k)

)
s(k) = P (k)F (k+1) + r

(k)
0 ,

where ‖·‖F stands for the Frobenius norm. In other words, the Krylov-secant
update produces the closest matrix in Frobenius norm satisfying the secant
equation that lies on the Krylov subspace K(k)

l

(
A(k), r

(k)
0

)
. This problem

has the equivalent formulation in terms of an Hessenberg matrix, namely,

min
G∈Rm×m

∥∥∥G−H(k)
m

∥∥∥
F

subject to Gy =
(
V (k)

)t
F (k) + βe1.

A geometric interpretation may be drawn out from this fact. Consider
Q, the set of matrix quotients of q = F (k+1) − F (k) by s = s(k+1) − s(k)

defined by
Q = {B ∈ Rn×n | Bs = y}, (23)

and X , the set of matrices generating the same Krylov subspace Km ≡
Km

(
A(k), r

(k)
0

)
. That is,

X = {B ∈ Rn×n | Km(B, r
(k)
0 ) = Km}. (24)

The resulting matrix A(k+1) in (22) may be viewed as the nearest to A(k) in X
among the set of nearest matrices in X to Q. Furthermore, if the intersection
of these two sets is not empty, then A(k+1) ∈ X ∩Q. This observation is key
to the construction of least–change secant updates consistent with operators
satisfying the standard secant condition and other properties prescribed by
a given affine subspace (e.g., sparsity pattern, positive definiteness) in Rn×n

(see [7, 8]).
Figure 2 provides a geometric interpretation of Krylov-secant updates

and standard secant updates. Here, A+
K represents the new approximation

obtained by (22), A+
B represents the new approximation obtained by (7), and

J is the Jacobian operator at the new point. Depending on the behavior of
the function F , either of these two updates will yield an operator closer to
the Jacobian.
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Figure 2: Geometric interpretation of Krylov-secant updates as compared to
standard secant updates.
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4.3 The Nonlinear Krylov-Eirola-Nevanlinna Algorithm

We are now in a position to describe an inexact NEN algorithm that ex-
ploits the information left behind by the GMRES method. We introduce the
nonlinear Krylov-Eirola-Nevanlinna (nonlinear KEN) algorithm as follows:

Algorithm 4.1 (Nonlinear KEN)

1. Give an initial guess u(0) and a Jacobian approximation A(0).

2. For k = 0, 1, . . . until convergence do

2.1
[
s(k), y(k),H

(k)
l , V

(k)
l , h

(k)
m+1,m, β ≡

∥∥∥r
(k)
0

∥∥∥
]

=GMRES
(
A(k),−F (k), s(k)

)
.

2.2 q(k) =
(
V

(k)
l

)t
F (k+1) + βe1.

2.3 H
(k+1)
l = H

(k)
l +

(
q(k)−H

(k)
l

y(k)

)
(y(k))t

(y(k))t
y(k)

.

2.4 Solve

min
y∈Kl

(
A(k),r

(k)
0

)
∥∥∥βe1 + H

(k+1)
l y

∥∥∥ ,

with H
(k+1)
l =

(
H

(k+1)
l

h
(k)
m+1,met

l

)
.

Denote its solution by ỹ(k).

2.5 s̃(k) = V
(k)
l ỹ(k).

2.6 u(k+1) = u(k) + s̃(k).

2.7 Update A(k) or construct A(k+1).

Note that the basic difference between the NEN algorithm and the non-
linear KEN algorithm is the way in which the composed nonlinear step is
computed. In the nonlinear KEN algorithm there are two updates: one in
n-th dimensional space and another restricted to the Krylov subspace of di-
mension l. The computational implications are evident. Whereas the NEN
algorithm solves two, generally large, linear systems of the same size, the
nonlinear KEN solves one large and one significantly smaller system (since,
in general, l ¿ n). For the sake of updating the Jacobian approximation,
step 2.7 in the nonlinear KEN algorithm may be implemented as step 2.3 of
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the NEN algorithm. Another option is to form A(k+1) from scratch at the
new nonlinear step so that a true Newton step is composed with this Krylov
secant update.

As one may expect from the discussion of the NEN algorithm leading
to the update (9), it may be shown that the resulting composite step is the
Broyden or Newton method with a chord step constrained to the Krylov
basis.

4.4 A high-order Newton–Krylov algorithm

An even faster version of the nonlinear KEN algorithm may be attained
by performing exhaustive rank-one updates of the Hessenberg matrix before
making the next GMRES call. The extent of these updates is determined
by the capability of the residual minimization problem to produce descent
directions. Hence, we stop performing Hessenberg updates when we are
unable to generate a sufficient decrease of ‖F‖. Details on this procedure
were described in [33].

5 Implementation issues

Since Krylov-secant updates imply several operations on a restricted basis
(or smaller space), computations may be carried out in an efficient fash-
ion. We proceed to mention the implications of Krylov-secant updates for
preconditioning, globalization and forcing term strategies.

5.1 Preconditioning

Expression (16) shows that if a preconditioner is used, the Krylov-secant
update (21) will reflect the implicit joint update of the Jacobian times its
preconditioner. More precisely, if M (k) is an operator whose inverse approx-
imates the inverse of the Jacobian (or an approximate Jacobian operator),
then the Krylov-secant update for right preconditioning implies

(
AM−1

)(k+1)
= A(k)

(
M (k)

)−1
+ P

(
q(k) −A(k)s(k)

) (
s̄(k)

)t

(
s̄(k)

)t
s̄(k)

, (25)
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with s̄(k) = M (k)s(k). On the other hand, left preconditioning reads as
follows

(
M−1A

)(k+1)
=

(
M (k)

)−1
A(k) + P

(
q(k) −A(k)s(k)

) (
s(k)

)t

(
s(k)

)t
s(k)

. (26)

Note that, in the latter case, there are no changes in the search direction
with respect to the unpreconditioned problem. These two implicit joint
updates must be treated with care in order to maintain consistency in the
computations. The key point is that, in general, one-rank updates do not
distribute with respect to the product of matrices and therefore we are unable
to guarantee that either

(
AM−1

)+
= A+ (

M+)−1 or
(
M−1A

)+
=

(
M+)−1

A+.

In addition, particularly for multiphase groundwater flow purposes, com-
putation of an updated version of the preconditioner may be a time consum-
ing task or even impossible to carry out when there is not an explicit form
of such preconditioner as it happens in two-stage preconditioning [6, 20]
multilevel [4] or in general inner-outer iterations [2]. Assuming that the
preconditioner is fixed after each Krylov-secant update seems to be the sim-
plest and most efficient strategy, even though this may introduce some extra
inaccuracies in the computations [18].

5.2 Globalization Strategy and Forcing Terms

The utilization of GMRES offers the opportunity to avoid explicit repre-
sentation of the Jacobian operator after each Krylov-secant update. To
implement the globalization strategy we must construct the interpolating
polynomial that satisfies

1
2
F ′ (0) =

1
2
〈F, Jsm〉 = 〈F, J (s0 + Vmym)〉

= 〈F,−F − r0〉+
〈
F, Vm+1Hmym

〉

= −‖F‖2 −
〈
F, Vm+1

(
βe1 −Hmym

)〉
.

(27)

Hence, no explicit reference to the Jacobian is required. Note that (27)
simplifies to 〈F, Jsm〉 = −‖F‖2 + ‖rm‖2 when s0 = 0. Furthermore, to
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compute residuals associated with the damped nonlinear step we need only
to compute

∥∥∥F (k) + J (k)
(
λ(k)s(k)

)∥∥∥
2

=
∥∥∥F (k)

∥∥∥
2
+ 2λ(k)

〈
F (k), J (k)s(k)

〉

+
(
λ(k)

∥∥∥J (k)s(k)
∥∥∥
)2

,

(28)

where
∥∥∥J (k)s(k)

∥∥∥
2

=
∥∥∥r(k)

m

∥∥∥
2 − 2

〈
F (k), J (k)s(k)

〉
−

∥∥∥F (k)
∥∥∥
2
. (29)

Finally, note that the Jacobian operator may also be bypassed in the
forcing term computation, since

η̃(k) =

∣∣∣
∥∥∥F (k)

∥∥∥−
∥∥∥βe1 −Hmy

∥∥∥
∣∣∣

∥∥F (k−1)
∥∥ =

∣∣∣
∥∥∥F (k)

∥∥∥− β
∣∣qt

m+1e1

∣∣
∣∣∣

∥∥F (k−1)
∥∥ . (30)

6 Numerical Experiments

Now we looked at a two-phase problem consisting of wetting and a non-
wetting phases. Primary variables are non-wetting phase pressures and wa-
ter concentrations. The model consists of a bottom hole pressure specified
water injection well at coordinate (1,1) of the plane and a bottom hole pres-
sure specified production well in the opposite corner. All terms are solved
implicitly.

Absolute permeabilities are set according the following diagonal tensor
K̄(in milidarcies)

K̄ =




100 0 0
0 500 0
0 0 50


 .

Grid sizes are defined as DX = DY = 20 ft and DZ = 2 ft. The timestep
increase factor is set to 1.25 in order to reach rapidly the maximum DT size
of 45 days. This allows the production of appreciable changes in pressures
and saturations and cause the activation of the several backtracking steps.
Table 1 shows the rest of the input parameters as specified in this simulation
study. Figure 3 show the relative permeability curves and capillary pressure
associated with the case model.

We use the Gauss-Seidel two-stage preconditioner [18] for solving the
linear coupled system. In brief, this preconditioner consists of a decoupling
stage defined by the inverse diagonals blocks of the coefficients representing
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Figure 3: Relative permeability and capillary pressure curves.

the contribution from oil pressures, water saturation and their interaction
within the same grid block. The second stage consists of computing an
iterative solution of pressures and saturations from the decoupled system.
The solutions are combined in a Gauss-Seidel fashion and hence, the whole
procedure entails an inner-outer iteration for the solution of the original
coupled system. Numerical experiments were carried out on a Linux-based
cluster consisting of 45 dual processors and interconnected through Myrinet
cards.

Table 1: Simulation input data.

Simulation Time (days) 500
Max. linear solver tolerance 1x10−5

Nonlinear solver tolerance 5.0x10−3

Number of gridblocks 48x48x8 = 18, 432
DT (days) 45
Water compressibility (psi−1) 3.3x10−6

Non-wetting compressibility (psi−1) 4.2x10−5

Water density (lb/ft3) 62.00
Non-wetting density (lb/ft3) 48.00
Water viscosity (cp) 0.23
Non-wetting viscosity (cp) 1.6
Initial water saturation .2
Initial pressure (psi) 1800
Injector BHP (psi) 2000
Producer BHP (psi) 1600

Table 2 shows how in this relatively simple problem, the Krylov-secant is
able to produce important reductions in the computation. This is reflected
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Table 2: Performance comparison between Newton method and the nonlinear
KEN algorithm.
Method Linear Iter. Nonlinear Iter. K-S updates Back’s CPU time (s)
Newton 160 1076 - 2 779
N. KEN 107 780 92 6 482

in the nonlinear KEN algorithm as a smaller number of nonlinear itera-
tions, linear iterations and CPU time in constrast to the Newton method. It
is worth mentioning that the Krylov-secant steps produce marginally more
backtracking steps than Newton for the successful iterations. However, New-
ton produces several backtracking steps at the beginning of the simulation
that causes a halving of the timestep. There were indications that the non-
linear KEN may have a larger convergence region than Newton under certain
situations. This fact has motivated other researchers to combine Broyden
or Picard iterations with the Newton method in order to develop efficient
continuation methods for timestepping.

Figures 4 compares the performance of both methods throughout the
whole simulation. Clearly, the nonlinear KEN outperforms Newton’s method.
We can observe how the difference in performance builds up as the simula-
tion progresses. As one might expect, the CPU time response is a direct
consequence of the number of linear and nonlinear iterations.

7 Conclusions and Further Work

We have proposed a new family of Krylov-secant updates with the potential
for a high-order of convergence in environmental problems. These updates
do not explicitly rely on the computation or use of the Jacobian matrix that,
in general, involves millions of floating point operations. We described the
nonlinear KEN algorithm and a higher order version of it that showed to be
superior to Newton’s method for the numerical cases explored in this paper.
The nonlinear KEN seems to be worthy of consideration in fully implicit
formulations where the solution of a nonlinear algebraic system must be
efficiently overcome.

Nevertheless, the potential for improving the present method is enor-
mous. More robust versions may be developed by enriching or refreshing the
Krylov basis in each of the nonlinear iterations. Advances along these lines
have been used to iteratively solve linear systems with different right hand
sides or a sequence of slowly changing linear systems in the matrix and the
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Figure 4: Comparison of linear (top), nonlinear iterations (middle) and CPU
time (bottom) between the nonlinear KEN and Newton method.
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right hand side [5, 23, 26]. We also find promising the use of deflation strate-
gies oriented to capture the physics of the problem through eigen-information
[1, 12].

We remark that our results are promising but must be evaluated un-
der more stringent physical situations and at a larger scale. Among tar-
get applications we consider useful the insights coming from two-phase air-
water, chemical processes and their coupling to geomechanics. The different
strengths in nonlinearities between the typical coupled equations of the sub-
surface model (i.e., one for the pressure potential or flow driving force and
another or others for the saturations/ concentrations) and the coupling itself
between reservoir variables are sufficiently good reasons to investigate more
of the preconditioning ideas discussed in this project.
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